La modélisation appliquée aux matériaux en chimie du solide : de l'étude de la structure à celle des propriétés

Florent Boucher Institut des Matériaux Jean Rouxel (IMN) Université de Nantes, CNRS, 44322 NANTES Cedex, FRANCE

www.cnrs-imn.fr

Plan de l'exposé

- La modélisation DFT : comment et pourquoi ?
- Exemples d'applications
 - aspects structuraux
 - densité de charge et de spin
 - structure électronique
 - au-delà de OK, vers la prédiction...
- Codes et moyens de calculs
- La communauté, les réseaux

La modélisation DFT : comment et pourquoi ? DFT : la procédure auto-cohérente

La modélisation DFT : comment et pourquoi ? DFT : énergie totale, forces et optimisation

La modélisation DFT : comment et pourquoi ? DFT : énergie totale, forces et optimisation

Exemples d'applications Aspects structuraux, énergie totale, stabilité de phase

Exemples d'applications

Aspects structuraux, énergie totale, stabilité de phase

Résolution de la structure de Na_{2/3}FePO₄

Exemples d'applications Aspects structuraux, énergie totale, stabilité de phase

Résolution de la structure de Na_{2/3}FePO₄ Boucher *et al. JACS* 2014, *136*, 9144–9157.

> VASP, Structual optimization Ferromagnetic ordering, GGA+U

Atom	Valence bond DRX	Valence bond DFT
Fe1	2.014	2.007
Fe2	2.906	3.015
Fe3	2.041	2.010
Na1	1.012	0.989
Na2	1.002	0.993
P1	5.073	4.972
P2	5.012	5.001
P3	4.94	5.014

Exemples d'applications

Aspects structuraux, énergie totale, stabilité de phase

Order/disorder transition Intensity variation of a superstructure peak vs. temperature

UNIVERSITÉ DE NANTES

Exemples d'applications Aspects structuraux, énergie totale, stabilité de phase

Potentiel de batteries

Densité électronique $\rho(\mathbf{r})$

Isomer Shift : IS $\alpha \rho_0(\mathbf{r})$

Quadrupol Splitting: Δ (QS) α EFG(ρ (r))

Paramètres Mössbauer

Paramètres RMN : gradient de champ électrique Truflandier PhD thesis (2007).

Interaction Quadripolaire $Q_{ii} \alpha EFG(\rho(r))$

Paramètres RMN : gradient de champ électrique Sadoc *et al.* PCCP 2011, *13*, 18539–18550.

²⁵Mg(EFG) : MgF₂ structure optimisée (DFT)

→ Orientation du tenseur EFG

UNIVERSITÉ DE NANTES

JEAN ROUXEL

Paramètres RMN : contact de Fermi

Etude de Perovskites Hybrides

UNIVERSITÉ DE NANTES

ANF 2015 Chimie du Solide – Caen du 23-25 Novembre

JEAN ROUXEL

Spectres EELS Fonction diélectrique Moreau *et al.* APL 2009, *14*, 123111.

V_{xc}: GGA+U with U=4.3 eV Spin polarized / Anti-ferromagnetic order

Spectres EELS Fonction diélectrique Kinyanjui *et al.* J. Phys. Chem. C 2009, *22*, 275501.

Paramètres RMN : écrantage et déplacement chimique

Yates, J. R. and Pickard, C. J. Computations of Magnetic Resonance Parameters for Crystalline Systems: Principles \hat{B}_{loc}

 $\mathbf{B}_{\mathrm{ext}}$

Encyclopedia of Magnetic Resonance, 2008, 1-9

$$\sigma_{s,\alpha\beta} = \frac{\partial B_{s,\alpha}^{ind}}{\partial B_{\beta}^{ext}}$$

$$\mathbf{B}^{ind}(\mathbf{r}) = \frac{\mu_0}{4\pi} \int d^3 r' \mathbf{j}(\mathbf{r'}) \times \frac{\mathbf{r} - \mathbf{r'}}{|\mathbf{r} - \mathbf{r'}|^3}$$

DFPT = Density functional perturbation theory

$$\mathbf{j}^{(1)}(\mathbf{r'}) = 2\sum_{o} \left[\langle \Psi_o^{(0)} | \mathbf{J}^p(\mathbf{r'}) | \Psi_o^{(1)} \rangle + \langle \Psi_o^{(1)} | \mathbf{J}^p(\mathbf{r'}) | \Psi_o^{(0)} \rangle \right] \\ + 2\sum_{o} \langle \Psi_o^{(0)} | \mathbf{J}^d(\mathbf{r'}) | \Psi_o^{(0)} \rangle$$

ANF 2015 Chimie du Solide - Caen du 23-25 Novembre

 $\mathbf{B}_{\mathrm{ind}}$

Paramètres RMN : écrantage et déplacement chimique Sadoc *et al.* PCCP 2011, *13*, 18539–18550.

Paramètres RMN : écrantage et déplacement chimique Biswal *et al.* JSSC 2013, *207*, 208–217.

 $\delta_{iso}/CFCl_3 = 0.80(3) \sigma_{iso} + 89(9)$

NMR experiment

NMR simulation

δ _{iso} (ppm)	Multi- plicity	Assignement	σ _{iso} (ppm)	δ _{iso} (ppm)	Assign.
-70.1	4	F2	210.7	-75.4	F2
106.4	2	F4, F6	10.0	90.1	F4
121.9	4	F1, F3, F5	-31.7	124.5	F5
136.3	2	F4, F6	-43.4	134.2	F6
168.6	4	F1, F3, F5	-86.1	169.4	F1
175.9	4	F1, F3, F5	-89.4	172.1	F3

Codes et moyens de calculs Quelques statistiques de publications sur 5 ans (France)

180 publications/an

30 publications/an

 \rightarrow AIMD

- → Energie/Surface
- → Bordeaux, Lille, Montpellier, Nantes

70 publications/an (Physiciens) → Surface, Optic, RMN → Jussieu (UPMC)

40 publications/an (Physiciens) → Spectro, Magnétisme, Lanthanides → Nantes, Toulouse, Bordeaux

16 publications/an → RMN

→ Strasbourg

→ Orléans, Versailles, Rennes, Nantes

Codes et moyens de calculs Disponibilités des codes

b-initio	Centre Nationaux	Mésocentres	Grappes locales
Vienna Sackage imulation	+ +	++	+ +
	+ +	++	+ +
W 2k	(+)	+	+ +
CPMD	+ +	+ +	+
CASTEP	(+)	+	+ +

La communauté, les réseaux Des modélisateurs proches des développeurs

Relations avec G. Kresse

- → Nancy, Nantes
- → VASP workshop (2012/2016)

Relations avec P. Blaha/K. Schwarz → Nantes, Rennes → WIEN2k workshop (2010/2014)

Relations avec J. Yates/C. Pickard Rennes, Orléans, UPMC

La communauté, les réseaux

Les modélisateurs entre eux et avec les autres ?

\rightarrow Des structures pour fédérer les modélisateurs

- ✓ RFCT
- ✓ GDR (DFT++, REST)
- et pour les modélisateurs de la 15 ?

→Comment renforcer le lien entre modélisateurs et expérimentateurs ?

- ✓ Workshop (CECAM Zurich 2013 : RMN et RPE)
- ✓ Formations aux calculs via des écoles (Nantes 2007 : RMN)
- → Rencontres autour de la modélisation pour les matériaux (ICAMM)
 ✓ ICAMM 2016 + VASP Workshop : Rennes/Nantes (Sept. 2016)

La modélisation en chimie du solide Ce dont je n'ai pas parlé !

\rightarrow Au-delà de OK : Dynamique Moléculaire

- ✓ Conductivité ionique (ions Li⁺, O²⁻)
- ✓ Transitions de phase
- Description des matériaux amorphes (verres chalcogénés)

→ Problématique des défauts

- ✓ Génération des structures
- Thermodynamique
- \rightarrow Etude des interfaces

UNIVERSITÉ DE NANTE

- ✓ Interfaces solide/solide
- ✓ Interfaces solide/molécule
- → Prédiction de structure : « structure from scratch ! »
 - The Materials Project (G. Ceder & K. Persson)
 - ✓ USPEX (A. R. Oganov)

International Symposium on STRUCTURE-PROPERTY RELATIONSHIPS IN SOLID STATE MATERIALS

spssm2016.sciencesconf.org

Institut des Matériaux Jean Rouxel 2 rue de la Houssinière - BP 32229 - 44322 NANTES cedex 3 - FRANCE www.cnrs-imn.fr

infos sur le site spssm2016.sciencesconf.org

CNIS